PH102 Tutorial Sheet 2 (Jan 09, 2015) Department of Physics, IIT Guwahati

Professor Alika Khare \& Professor Pratima Agarwal

1. The volume charge density n with in a certain region is given by $n=z^{2} \sin \varphi$ coulomb $/ m^{3}$. Calculate the total charge with in the region $0 \leq \rho \leq 5$, $0 \leq \varphi \leq \pi$ and $-1 \leq \mathrm{z} \leq 1$.
2. Find the gradient of the following scalar field:
i. $\quad U=4 x z^{2}+3 y z$
ii. $\quad T=5 \rho e^{-2 z} \sin \varphi$
iii. $Q=\frac{\sin \theta \sin \varphi}{r^{2}}$
3. The temperature in an auditorium is given by $T=x^{2}+y^{2}-z$. A mosquito located at a point $\mathrm{P}(1,1,2)$ in the auditorium wants to fly in such a direction to get warm as soon as possible. In what direction it should fly?
4. The scalar field in the cylindrical coordinate system is given by $f(\rho, \varphi, z)=\rho \cos ^{2} \varphi+z \sin \varphi$. Calculate the gradient in spherical polar coordinates.
5. For the function $(x, y, z)=x^{2} y+y z$, find the rate of change of the function with distance along the direction $\vec{a}=\hat{\imath}+2 \hat{\jmath}+3 \hat{k}$ at a point at a point $\mathrm{p}(1,2,-1)$.
6. The temperature profile of a system as a function of T is given in fig 1 below. Mark the arrow head in the direction of gradient of $\mathrm{T}(\overrightarrow{\nabla T})$ for the points $\mathrm{A}, \mathrm{B}, \mathrm{C} D$ and E . At what point gradient is maximum?

Fig 1
7. Find the divergence of the following vectors:
i. $\quad \overrightarrow{\boldsymbol{A}}=e^{x y} \hat{\boldsymbol{\imath}}+\sin x y \hat{\boldsymbol{\jmath}}+\cos ^{2} x z \widehat{\boldsymbol{k}}$
ii. $\quad \overrightarrow{\boldsymbol{B}}=\rho z^{2} \cos \varphi \widehat{\boldsymbol{\rho}}+z \sin ^{2} \varphi \widehat{\boldsymbol{k}}$
iii. $\overrightarrow{\boldsymbol{C}}=r \cos \theta \hat{\boldsymbol{r}}-\frac{1}{r} \sin \theta \widehat{\boldsymbol{\theta}}+2 r^{2} \sin \theta \widehat{\boldsymbol{\varphi}}$
8. Find the curl for all the vectors of problem 7 above.
9. Find $\boldsymbol{\nabla X}(\overrightarrow{\boldsymbol{A}} \times \overrightarrow{\boldsymbol{r}})$ where $\overrightarrow{\boldsymbol{A}}$ is a constant vector. (Hint: solve the problem in Cartesian coordinates.)

